top of page

Перекрыть кислород опухоли и победить анемию

  • Фото автора: Анна Злобина
    Анна Злобина
  • 30 окт. 2019 г.
  • 2 мин. чтения

Объясняем, за что присудили Нобелевскую премию по физиологии и медицине

Нобелевский комитет объявил лауреатов премии 2019 года по физиологии и медицине. Ими стали Грегг Семенза, Уильям Келин и Питер Рэтклифф. Премию они получили с формулировкой «за исследование того, как клетки адаптируются к изменению уровня кислорода». Рэтклифф работает в Великобритании, в Институте Фрэнсиса Крика. Семенза и Келин живут в Нью-Йорке: первый работает в Университете Джонса Хопкинса, а второй — в Институте Говарда Хьюза. «Медуза» объясняет, чем именно прославились нынешние лауреаты и как их работа связана с исследованиями рака, ишемической болезни и веществами, которые используются в допинге.

За что дали Нобелевскую премию?

Британский учёный-медик и молекулярный биолог Питер Рэтклифф
Британский учёный-медик и молекулярный биолог Питер Рэтклифф

Если чуть подробнее, работа всех трех лауреатов сводится к открытию механизма, который лежит в основе борьбы с гипоксией. В результате серии работ, основная часть которых пришлась на начало 1990-х, нынешние лауреаты установили, что для борьбы с недостатком кислорода в клетках всех животных есть специальный механизм, который приводит к «включению» набора специализированных генов, способных улучшить снабжение клетки кислородом. К ним относится, например, известный по допинговым скандалам эритропоэтин — гормон, повышающий уровень гемоглобина в крови за счет стимуляции созревания новых эритроцитов. Спортсменам это помогает выдерживать аэробные нагрузки.

Центральный элемент всего этого механизма, как установили нынешние лауреаты, это «фактор, индуцируемый гипоксией» (hypoxia-inducible factor, HIF). Приоритет его открытия принадлежит прежде всего Греггу Семензе. Ученому, во-первых, удалось установить, что этот «фактор» состоит из двух разных белков (один из которых был уже ранее известен). Во время гипоксии, когда клетка «задыхается» от недостатка кислорода, они работают вместе, проникая в клеточное ядро, где находится ДНК. Там они находят на ДНК нужные участки, присоединяются к ним и включают работу противогипоксических генов — их достаточно много, среди них есть и ген эритропоэтина.

В начале 1990-х годов Греггу Семензе удалось найти ген, кодирующий белок HIF-1α — основную часть двусоставного «включателя» HIF. Благодаря обнаружению этого гена и картированию того места на ДНК, куда садится кодируемый им белок, ученому удалось нащупать главную нить в клубке молекулярных путей, регулирующих ответ клетки на недостаток кислорода. Работа Рэтклиффа и Келина продолжила это открытие и позволила ответить на другой принципиальный вопрос — объяснить, как HIF может «чувствовать» уровень кислорода в клетке.

Схема регуляции генов, активируемых гипоксией. Основу системы составляет белок HIF-1α, который стабильно производится клеткой, но при нормальном уровне кислорода постоянно уничтожается. Если же кислорода не хватает, то он образует пару с другим белком, ARNT, проникает в ядро, находит на ДНК участки, которые специализируются на гипоксии генов, и включает их массовое производство.
Схема регуляции генов, активируемых гипоксией. Основу системы составляет белок HIF-1α, который стабильно производится клеткой, но при нормальном уровне кислорода постоянно уничтожается. Если же кислорода не хватает, то он образует пару с другим белком, ARNT, проникает в ядро, находит на ДНК участки, которые специализируются на гипоксии генов, и включает их массовое производство.

А какая-то практическая польза от этого открытия есть?

Есть. Вообще говоря, Нобелевскую премию дают не за практическую пользу, а за фундаментальность открытия. Но в нынешнем случае и с тем и с другим никаких проблем нет. Дело в том, что управление «правильным» уровнем кислорода — это важнейшая часть жизни организма как в норме, так и в патологии.

Чтобы ответить на вопрос о практической пользе, можно, например, просто взять список болезней, которые являются наиболее частыми причинами смерти в мире. Почти все они (ишемия, инфаркты, рак) будут иметь прямое отношение к гипоксии и, следовательно, к работе того механизма, который удалось открыть нынешнем лауреатам.

К примеру, вопрос снабжения кислородом — это принципиальный вопрос для выживания всех видов опухолей. Само существование злокачественных опухолей возможно только потому, что их клеткам удается «взламывать» нормальную работу механизмов ответа на гипоксию. Дело в том, что клетки внутри опухоли потребляют очень много энергии — в разы больше, чем нормальные клетки. И для жизни им необходимо соответствующее количество кислорода. В центре опухоли из-за этого всегда возникает кислородное голодание, которое опухоль пытается компенсировать путем посылки во внешние ткани молекулярных сигналов, стимулирующих рост в опухоли дополнительных кровеносных сосудов. Эта стимуляция как раз и требует работы открытого лауреатами механизма. А HIF, соответственно, является важнейшей мишенью, выключение которой потенциально способно подавить рост самых разных опухолей.

Уже сейчас в базе данных клинических исследований Национальной медицинской библиотеки США зарегистрировано несколько десятков исследований препаратов, механизм работы которых основан на выключении HIF с помощью специальных ингибиторов. Среди болезней, которые медики пытаются вылечить таким образом, есть глиобластома, рак груди, плоскоклеточная карцинома и многие другие онкологические заболевания. Разработка всех этих лекарств без открытия мишени, на которую они должны действовать, была бы невозможна.



Comentários


Комментарий преподавателя

© 2019 В.Гурьянов, С.Корзун, М.Королёва

bottom of page